Chromosomal toxin-antitoxin systems may act as antiaddiction modules.

نویسندگان

  • Manuel Saavedra De Bast
  • Natacha Mine
  • Laurence Van Melderen
چکیده

Toxin-antitoxin (TA) systems are widespread among bacterial chromosomes and mobile genetic elements. Although in plasmids TA systems have a clear role in their vertical inheritance by selectively killing plasmid-free daughter cells (postsegregational killing or addiction phenomenon), the physiological role of chromosomally encoded ones remains under debate. The assumption that chromosomally encoded TA systems are part of stress response networks and/or programmed cell death machinery has been called into question recently by the observation that none of the five canonical chromosomally encoded TA systems in the Escherichia coli chromosome seem to confer any selective advantage under stressful conditions (V. Tsilibaris, G. Maenhaut-Michel, N. Mine, and L. Van Melderen, J. Bacteriol. 189:6101-6108, 2007). Their prevalence in bacterial chromosomes indicates that they might have been acquired through horizontal gene transfer. Once integrated in chromosomes, they might in turn interfere with their homologues encoded by mobile genetic elements. In this work, we show that the chromosomally encoded Erwinia chrysanthemi ccd (control of cell death) (ccd(Ech)) system indeed protects the cell against postsegregational killing mediated by its F-plasmid ccd (ccd(F)) homologue. Moreover, competition experiments have shown that this system confers a fitness advantage under postsegregational conditions mediated by the ccd(F) system. We propose that ccd(Ech) acts as an antiaddiction module and, more generally, that the integration of TA systems in bacterial chromosomes could drive the evolution of plasmid-encoded ones and select toxins that are no longer recognized by the antiaddiction module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxin–antitoxin systems

Toxin-antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin. The toxins of all known TA systems are proteins while the antitoxins are either proteins or non-coding RNAs. Based on the molecular nature of the antitoxin and its mode of interaction with the toxin the TA modules are currently grouped into five classes. In general, the toxin is more stab...

متن کامل

Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7.

Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexis...

متن کامل

Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning.

Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using more than 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxi...

متن کامل

Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes

Toxin-antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin-antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin-antito...

متن کامل

sRNAs in bacterial type I and type III toxin-antitoxin systems.

Toxin-antitoxin (TA) loci consist of two genes: a stable toxin whose overexpression kills the cell or causes growth stasis and an unstable antitoxin that neutralizes the toxin action. Currently, five TA systems are known. Here, we review type I and type III systems in which the antitoxins are regulatory RNAs. Type I antitoxins act by a base-pairing mechanism on toxin mRNAs. By contrast, type II...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 13  شماره 

صفحات  -

تاریخ انتشار 2008